prjunnamed_netlist/cell/
memory.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
use crate::{Const, ControlNet, Design, Net, Value};

/// An all-in-one random-access memory cell.
///
/// A memory is made of `depth` rows, each of them `width` bits wide.  While a memory row
/// is considered to be the basic access unit, we support the notion of "wide ports",
/// which access a (naturally aligned) power-of-two number of memory rows at once.
///
/// While any number and combination of read and write ports is considered valid in
/// the netlist, the rules for what memories can actually be realized in hardware depend
/// on the target, and can be quite byzantine.
///
/// There are no priority rules among write ports.  If more than one port writes to the same
/// memory bit at the same time, the value written is undefined.
///
/// The output of the memory cell consists of the read data from all the read ports,
/// concatenated in order.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct Memory {
    /// The number of rows in the memory.
    ///
    /// For every port on the memory, `depth` must be evenly divisible
    /// by `port.data_len / memory.width`.  This ensures that, for wide ports, every access
    /// is either completely in-bounds, or completely out-of-bounds.
    pub depth: usize,
    /// The width of single memory row.
    pub width: usize,
    /// Initial value for the memory, with all the rows concatenated in order.
    /// Must have a length equal to `depth * width`.
    pub init_value: Const,
    pub write_ports: Vec<MemoryWritePort>,
    pub read_ports: Vec<MemoryReadPort>,
}

/// A synchronous memory write port.
///
/// Asynchronous memory write ports are not currently supported.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct MemoryWritePort {
    /// The write address, selecting which row(s) to write.  The address is always counted
    /// in units of the port's data width.  Thus, if the port width is equal to the memory
    /// width, the address is equal to the row index.  However, for wide ports,
    /// the address is implicitly shifted left by `log2(port.data.len() / memory.width)` bits
    /// to obtain the first row index.
    ///
    /// The address can have any width.  If the address is too short to address all
    /// memory rows, so be it — higher rows will be unreachable by this port.
    ///
    /// Writes to out-of-bounds addresses do not modify the memory.
    pub addr: Value,
    /// The write data.  The width must be a power-of-two multiple of the memory width.
    pub data: Value,
    /// The write mask.  Must have the same width as `data`.  On every active clock edge,
    /// a `1` enables writing to the memory for the given data bit, `0` prevents writing.
    pub mask: Value,
    pub clock: ControlNet,
}

/// A memory read port, either synchronous or asynchronous.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct MemoryReadPort {
    /// The read address, selecting which row(s) to read.  Follows the same rules as
    /// [`MemoryWritePort`] address.
    ///
    /// Reading an out-of-bounds address results in an undefined value.
    pub addr: Value,
    /// The width of the read data.  Must be a power-of-two multiple of the memory width.
    pub data_len: usize,
    /// A flip-flop-like structure describing the synchronous read port, or `None` for asynchronous
    /// read ports.  If this is `None`, the read port continuously reads the memory row(s) selected
    /// by the `addr` value and outputs that as the read data.
    pub flip_flop: Option<MemoryReadFlipFlop>,
}

/// A structure describing a synchronous read port's control signals and behavior.
///
/// The behavior of a synchronous read port is mostly the same as an asynchronous read port
/// feeding a flip-flop with the controls described in this structure.  However, synchronous
/// read ports have special behavior when a read coincides with a write to the same memory
/// row.  This behavior is selected by the `relations` field.
///
/// The fields other than `relations` have the same meaning as the corresponding fields in
/// the [`FlipFlop`] structure.  The width of the reset, clear, and init values must be equal to
/// the `data_len` of the port.
///
/// [`FlipFlop`]: crate::FlipFlop
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct MemoryReadFlipFlop {
    pub clock: ControlNet,
    pub clear: ControlNet, // async reset
    pub reset: ControlNet, // sync reset
    pub enable: ControlNet,
    pub reset_over_enable: bool,

    pub clear_value: Const,
    pub reset_value: Const,
    pub init_value: Const,

    /// The behavior of this read port during a simultaneous write by a given write port.
    ///
    /// Each entry in this vector describes the behavior of this read port in relation to a write
    /// port with the same index in the `write_ports` vector of the containing memory.
    ///
    /// Only ports sharing the same `clock` net can have defined relations — this vector must contain
    /// `MemoryPortRelation::Undefined` for every write port where `write_port.clock != read_port.clock`.
    ///
    /// If a given memory bit is simultanously written by more than one write port while being
    /// read, the read data is undefined (as is the value written to memory), regardless of
    /// the relations between the ports.
    pub relations: Vec<MemoryPortRelation>,
}

#[derive(Debug, Clone, Copy, Default, PartialEq, Eq, Hash)]
pub enum MemoryPortRelation {
    #[default]
    /// When the same memory bit is written by the given write port while being read,
    /// the read value is undefined.
    Undefined,
    /// When the same memory bit is written by the given write port while being read,
    /// the read value is the value of the memory bit before the write.
    ReadBeforeWrite,
    /// When the same memory bit is written by the given write port while being read,
    /// the read value is the newly written value.
    Transparent,
}

impl Memory {
    pub fn output_len(&self) -> usize {
        self.read_ports.iter().map(|port| port.data_len).sum()
    }

    pub fn visit(&self, mut f: impl FnMut(Net)) {
        for write_port in &self.write_ports {
            write_port.visit(&mut f);
        }
        for read_port in &self.read_ports {
            read_port.visit(&mut f);
        }
    }

    pub fn visit_mut(&mut self, mut f: impl FnMut(&mut Net)) {
        for write_port in &mut self.write_ports {
            write_port.visit_mut(&mut f);
        }
        for read_port in &mut self.read_ports {
            read_port.visit_mut(&mut f);
        }
    }

    pub fn read_port_output_slice(&self, port_index: usize) -> std::ops::Range<usize> {
        let mut start = 0;
        for port in &self.read_ports[..port_index] {
            start += port.data_len;
        }
        let port = &self.read_ports[port_index];
        start..start + port.data_len
    }
}

impl MemoryWritePort {
    pub fn wide_log2(&self, memory: &Memory) -> usize {
        if memory.width == 0 {
            return 0;
        }
        (self.data.len() / memory.width).ilog2() as usize
    }

    pub fn visit(&self, mut f: impl FnMut(Net)) {
        self.addr.visit(&mut f);
        self.data.visit(&mut f);
        self.mask.visit(&mut f);
        self.clock.visit(&mut f);
    }

    pub fn visit_mut(&mut self, mut f: impl FnMut(&mut Net)) {
        self.addr.visit_mut(&mut f);
        self.data.visit_mut(&mut f);
        self.mask.visit_mut(&mut f);
        self.clock.visit_mut(&mut f);
    }
}

impl MemoryReadPort {
    pub fn new_asynchronous(addr: impl Into<Value>, data_len: usize) -> Self {
        Self { addr: addr.into(), data_len, flip_flop: None }
    }

    pub fn new_clocked(addr: impl Into<Value>, data_len: usize, clock: impl Into<ControlNet>) -> Self {
        Self {
            addr: addr.into(),
            data_len,
            flip_flop: Some(MemoryReadFlipFlop {
                clock: clock.into(),
                clear: ControlNet::ZERO,
                reset: ControlNet::ZERO,
                enable: ControlNet::ONE,
                reset_over_enable: false,
                clear_value: Const::undef(data_len),
                reset_value: Const::undef(data_len),
                init_value: Const::undef(data_len),
                relations: vec![],
            }),
        }
    }

    pub fn wide_log2(&self, memory: &Memory) -> usize {
        if memory.width == 0 {
            return 0;
        }
        (self.data_len / memory.width).ilog2() as usize
    }

    pub fn visit(&self, mut f: impl FnMut(Net)) {
        self.addr.visit(&mut f);
        if let Some(ref flip_flop) = self.flip_flop {
            flip_flop.clock.visit(&mut f);
            flip_flop.clear.visit(&mut f);
            flip_flop.reset.visit(&mut f);
            flip_flop.enable.visit(&mut f);
        }
    }

    pub fn visit_mut(&mut self, mut f: impl FnMut(&mut Net)) {
        self.addr.visit_mut(&mut f);
        if let Some(ref mut flip_flop) = self.flip_flop {
            flip_flop.clock.visit_mut(&mut f);
            flip_flop.clear.visit_mut(&mut f);
            flip_flop.reset.visit_mut(&mut f);
            flip_flop.enable.visit_mut(&mut f);
        }
    }
}

impl MemoryReadFlipFlop {
    pub fn with_clock(self, clock: impl Into<ControlNet>) -> Self {
        Self { clock: clock.into(), ..self }
    }

    pub fn with_clear(self, clear: impl Into<ControlNet>) -> Self {
        Self { clear: clear.into(), ..self }
    }

    pub fn with_clear_value(self, clear: impl Into<ControlNet>, clear_value: impl Into<Const>) -> Self {
        Self { clear: clear.into(), clear_value: clear_value.into(), ..self }
    }

    pub fn with_reset(self, reset: impl Into<ControlNet>) -> Self {
        Self { reset: reset.into(), reset_over_enable: false, ..self }
    }

    pub fn with_reset_value(self, reset: impl Into<ControlNet>, reset_value: impl Into<Const>) -> Self {
        Self { reset: reset.into(), reset_over_enable: false, reset_value: reset_value.into(), ..self }
    }

    pub fn with_enable(self, enable: impl Into<ControlNet>) -> Self {
        Self { enable: enable.into(), reset_over_enable: true, ..self }
    }

    pub fn with_init(self, value: impl Into<Const>) -> Self {
        let value = value.into();
        Self { clear_value: value.clone(), reset_value: value.clone(), init_value: value, ..self }
    }

    pub fn has_clock(&self) -> bool {
        !self.clock.is_const()
    }

    pub fn has_enable(&self) -> bool {
        !self.enable.is_always(true)
    }

    pub fn has_reset(&self) -> bool {
        !self.reset.is_always(false)
    }

    pub fn has_reset_value(&self) -> bool {
        !self.reset_value.is_undef()
    }

    pub fn has_clear(&self) -> bool {
        !self.clear.is_always(false)
    }

    pub fn has_clear_value(&self) -> bool {
        !self.clear_value.is_undef()
    }

    pub fn has_init_value(&self) -> bool {
        !self.init_value.is_undef()
    }

    pub fn remap_reset_over_enable(&mut self, design: &Design) {
        if self.reset_over_enable {
            return;
        }
        self.reset_over_enable = true;
        if self.reset.is_always(false) || self.enable.is_always(true) {
            return;
        }
        let reset = self.reset.into_pos(design);
        let enable = self.enable.into_pos(design);
        self.reset = ControlNet::Pos(design.add_and(reset, enable).unwrap_net());
    }

    pub fn remap_enable_over_reset(&mut self, design: &Design) {
        if !self.reset_over_enable {
            return;
        }
        self.reset_over_enable = false;
        if self.reset.is_always(false) || self.enable.is_always(true) {
            return;
        }
        let reset = self.reset.into_pos(design);
        let enable = self.enable.into_pos(design);
        self.enable = ControlNet::Pos(design.add_or(reset, enable).unwrap_net());
    }
}