prjunnamed_netlist/cell/
flip_flop.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
use crate::{Const, ControlNet, Design, Net, Value};

/// A flip-flop cell.
///
/// The output is determined by the following rules:
///
/// - at the beginning of time, the output is set to `init_value`
/// - whenever `clear` as active, the output is set to `clear_value`
/// - whenever `clear` is not active, and an active edge happens on `clock`:
///   - if `reset_over_enable` is true:
///     - if `reset` is active, the output is set to `reset_value`
///     - if `enable` is false, output value is unchanged
///   - if `reset_over_enable` is false:
///     - if `enable` is false, output value is unchanged
///     - if `reset` is active, the output is set to `reset_value`
///   - otherwise, the output is set to `data`
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct FlipFlop {
    pub data: Value,
    /// The clock.  The active edge is rising if it is a [`ControlNet::Pos`], and falling if it is
    /// a [`ControlNet::Neg`].
    pub clock: ControlNet,
    /// Asynchronous reset.
    pub clear: ControlNet,
    /// Synchronous reset.
    pub reset: ControlNet,
    /// Clock enable.
    pub enable: ControlNet,
    /// If true, `reset` has priority over `enable`.  Otherwise, `enable` has priority over `reset`.
    pub reset_over_enable: bool,

    /// Must have the same width as `data`.
    pub clear_value: Const,
    /// Must have the same width as `data`.
    pub reset_value: Const,
    /// Must have the same width as `data`.
    pub init_value: Const,
}

impl FlipFlop {
    pub fn new(data: Value, clock: impl Into<ControlNet>) -> Self {
        let size = data.len();
        FlipFlop {
            data,
            clock: clock.into(),
            clear: ControlNet::ZERO,
            reset: ControlNet::ZERO,
            enable: ControlNet::ONE,
            reset_over_enable: false,
            clear_value: Const::undef(size),
            reset_value: Const::undef(size),
            init_value: Const::undef(size),
        }
    }

    pub fn with_data(self, data: impl Into<Value>) -> Self {
        Self { data: data.into(), ..self }
    }

    pub fn with_clock(self, clock: impl Into<ControlNet>) -> Self {
        Self { clock: clock.into(), ..self }
    }

    pub fn with_clear(self, clear: impl Into<ControlNet>) -> Self {
        Self { clear: clear.into(), ..self }
    }

    pub fn with_clear_value(self, clear: impl Into<ControlNet>, clear_value: impl Into<Const>) -> Self {
        Self { clear: clear.into(), clear_value: clear_value.into(), ..self }
    }

    pub fn with_reset(self, reset: impl Into<ControlNet>) -> Self {
        Self { reset: reset.into(), reset_over_enable: false, ..self }
    }

    pub fn with_reset_value(self, reset: impl Into<ControlNet>, reset_value: impl Into<Const>) -> Self {
        Self { reset: reset.into(), reset_over_enable: false, reset_value: reset_value.into(), ..self }
    }

    pub fn with_enable(self, enable: impl Into<ControlNet>) -> Self {
        Self { enable: enable.into(), reset_over_enable: true, ..self }
    }

    pub fn with_init(self, value: impl Into<Const>) -> Self {
        let value = value.into();
        Self { clear_value: value.clone(), reset_value: value.clone(), init_value: value, ..self }
    }

    pub fn output_len(&self) -> usize {
        self.data.len()
    }

    pub fn has_clock(&self) -> bool {
        !self.clock.is_const()
    }

    pub fn has_enable(&self) -> bool {
        !self.enable.is_always(true)
    }

    pub fn has_reset(&self) -> bool {
        !self.reset.is_always(false)
    }

    pub fn has_reset_value(&self) -> bool {
        !self.reset_value.is_undef()
    }

    pub fn has_clear(&self) -> bool {
        !self.clear.is_always(false)
    }

    pub fn has_clear_value(&self) -> bool {
        !self.clear_value.is_undef()
    }

    pub fn has_init_value(&self) -> bool {
        !self.init_value.is_undef()
    }

    pub fn slice(&self, range: impl std::ops::RangeBounds<usize> + Clone) -> FlipFlop {
        FlipFlop {
            data: self.data.slice(range.clone()),
            clock: self.clock,
            clear: self.clear,
            reset: self.reset,
            enable: self.enable,
            reset_over_enable: self.reset_over_enable,
            clear_value: self.clear_value.slice(range.clone()),
            reset_value: self.reset_value.slice(range.clone()),
            init_value: self.init_value.slice(range.clone()),
        }
    }

    pub fn remap_reset_over_enable(&mut self, design: &Design) {
        if self.reset_over_enable {
            return;
        }
        self.reset_over_enable = true;
        if self.reset.is_always(false) || self.enable.is_always(true) {
            return;
        }
        let reset = self.reset.into_pos(design);
        let enable = self.enable.into_pos(design);
        self.reset = ControlNet::Pos(design.add_and(reset, enable).unwrap_net());
    }

    pub fn remap_enable_over_reset(&mut self, design: &Design) {
        if !self.reset_over_enable {
            return;
        }
        self.reset_over_enable = false;
        if self.reset.is_always(false) || self.enable.is_always(true) {
            return;
        }
        let reset = self.reset.into_pos(design);
        let enable = self.enable.into_pos(design);
        self.enable = ControlNet::Pos(design.add_or(reset, enable).unwrap_net());
    }

    pub fn unmap_reset(&mut self, design: &Design) {
        self.remap_enable_over_reset(design);
        self.data = design.add_mux(self.reset, &self.reset_value, &self.data);
        self.reset = ControlNet::ZERO;
    }

    pub fn unmap_enable(&mut self, design: &Design, output: &Value) {
        self.remap_reset_over_enable(design);
        self.data = design.add_mux(self.enable, &self.data, output);
        self.enable = ControlNet::ONE;
    }

    pub fn invert(&mut self, design: &Design, output: &Value) -> Value {
        self.data = design.add_not(&self.data);
        self.clear_value = self.clear_value.not();
        self.reset_value = self.reset_value.not();
        self.init_value = self.init_value.not();
        let new_output = design.add_void(self.data.len());
        design.replace_value(output, design.add_not(&new_output));
        new_output
    }

    pub fn visit(&self, mut f: impl FnMut(Net)) {
        self.data.visit(&mut f);
        self.clock.visit(&mut f);
        self.enable.visit(&mut f);
        self.reset.visit(&mut f);
        self.clear.visit(&mut f);
    }

    pub fn visit_mut(&mut self, mut f: impl FnMut(&mut Net)) {
        self.data.visit_mut(&mut f);
        self.clock.visit_mut(&mut f);
        self.enable.visit_mut(&mut f);
        self.reset.visit_mut(&mut f);
        self.clear.visit_mut(&mut f);
    }
}